One-Week Build: How a Zero-Tech Team Can Quickly Launch an "E-commerce + Social Media" Data Platform

High technical barriers, limited manpower, and fragmented data are common challenges when building a data platform. This article provides a “Minimum Viable Data Platform (MVP)” solution that even non-technical teams can implement to launch a real-time monitoring system across e-commerce and social media platforms within one week.

Core Objectives

  • Lightweight data platform architecture designed for small teams without backend engineers

  • Integrate product and social data from Douyin/TikTok, Pinduoduo, and Lazada

  • Fast deployment: no backend or only basic use of Google Apps Script / Python

1. MVP Architecture Design: Simplest Viable System

This architecture combines existing tools into a complete data platform:

Module

Tool

Purpose

Data Fetching

LuckData API

Collect product, video, and comment data

Storage

Google Sheets / Excel

Visualization and data archiving

Data Processing

Apps Script / Python

Scheduled pulling + lightweight ETL

Visualization

Data Studio / Streamlit

Build dashboards, filters, and alerts

Notifications

Feishu / Slack / Email

Auto-push key data

2. Step-by-Step: Fetching Data into Spreadsheets

Below is a sample of collecting Douyin trending videos and Lazada product prices into Google Sheets.

✅ Example: Fetch Douyin Trending Videos into Google Sheets

function fetchDouyinRankings() {

var sheet = SpreadsheetApp.getActiveSpreadsheet().getSheetByName("Douyin");

var url = "https://luckdata.io/api/douyin-API/get_xv5p?city=110000&type=rise_heat&end_date=20241224&page_size=10&start_date=20241223";

var response = UrlFetchApp.fetch(url);

var data = JSON.parse(response.getContentText());

var videos = data.data;

sheet.clearContents();

sheet.appendRow(["Video Title", "Likes", "Author", "Publish Time"]);

for (var i = 0; i < videos.length; i++) {

sheet.appendRow([

videos[i].title,

videos[i].like_count,

videos[i].author_name,

videos[i].create_time

]);

}

}

Use Google Apps Script’s trigger function to schedule automatic daily updates.

✅ Example: Fetch Lazada Product Data into Spreadsheet

function fetchLazadaProducts() {

var sheet = SpreadsheetApp.getActiveSpreadsheet().getSheetByName("Lazada");

var url = "https://luckdata.io/api/lazada-online-api/gvqvkzpb7xzb?page=1&site=vn&query=airfryer";

var response = UrlFetchApp.fetch(url);

var data = JSON.parse(response.getContentText());

var products = data.data;

sheet.clearContents();

sheet.appendRow(["Product Title", "Price", "Link"]);

for (var i = 0; i < products.length; i++) {

sheet.appendRow([

products[i].title,

products[i].price,

products[i].url

]);

}

}

3. Real-Time Dashboard Building (Optional Tools)

Option 1: Google Data Studio

  • Data Source: Google Sheets

  • Visualizations include:

    • Product price trend charts

    • Like count trends for videos

    • Cross-platform comparisons

  • Benefits: No-code, easy collaboration, quick to launch

Option 2: Rapid Prototype with Streamlit (Python)

import streamlit as st

import pandas as pd

df = pd.read_csv("douyin_data.csv")

st.title("Douyin Trending Dashboard")

st.dataframe(df)

Easily build a frontend for your data and host locally or online.

4. Set Up Alerts: Push Notifications via Feishu/Slack

For example, price alerts that compare today's and yesterday’s data:

function priceChangeAlert() {

var sheet = SpreadsheetApp.getActiveSpreadsheet().getSheetByName("Lazada");

var rows = sheet.getDataRange().getValues();

for (var i = 1; i < rows.length; i++) {

var priceToday = parseFloat(rows[i][1]);

var priceYesterday = parseFloat(rows[i][2]);

if (Math.abs(priceToday - priceYesterday) / priceYesterday > 0.2) {

sendFeishu("Price Alert: " + rows[i][0] + " has changed by more than 20%");

}

}

}

You can also use Slack or email APIs to notify team members of anomalies.

5. Suggested Project Folder Structure

/project/

├── douyin_fetch.gs # Fetch trending videos

├── lazada_fetch.gs # Fetch product search results

├── alert_logic.gs # Price alert logic

├── dashboard.gsheet # Visualization spreadsheet

└── README.md

Clear modular design makes future maintenance and expansion easier.

✅ One-Week Implementation Timeline

Day

Task

Day 1

Set up API flow and register on LuckData

Day 2

Connect Google Sheets and Apps Script

Day 3

Schedule automated data pulling

Day 4

Build basic dashboards in Data Studio

Day 5

Set up Feishu alerts

Day 6

Standardize fields and data formatting

Day 7

Upgrade dashboard with Streamlit or BI tools

Conclusion

This architecture requires no servers or databases, and no full-time engineers. With just spreadsheets and lightweight scripts, any team can begin building their own “e-commerce + social media” data platform. Perfect for startups, product selection teams, and marketing departments aiming for data-driven decisions.

Articles related to APIs :